MIPOLAM COLLECTION

HOMOGENEOUS VINYL FLOORING

<u>Gerflor</u>

Our mission at Gerflor: make our customers and users' lives easier with sustainable innovative, healthy, and less impactful products.

When it comes to sustainability, we set ourselves to the highest standards. As part of this commitment, Gerflor has decided to take a leadership position with a goal of publishing a third-party independently verified EPD for each of its product ranges

This EPD covers "Mipolam collection", homogeneous vinyl flooring.

• According to ISO 22196 and ISO 21702, the products have, respectively, anti-bacterial activity against MRSA of 99% after 24h and anti-viral activity against human coronavirus 229E of 99.7% after 2h.

• The product emission rate of volatile organic compounds is < 10 $\mu g/m3$ (TVOC after 28 days - ISO 16000 -6).

• They have an exclusive and patented Evercare surface treatment which allowed easy maintenance, no wax for life and high stain resistance.

• They have the Floorscore and M1 certifications.

Since 2011, Gerflor offers an innovative program in select countries for collecting installation waste and end-of-life products. Once collected, those products are sent to a recycling center.

The recyclate is then reintegrated in Gerflor factories into new products, to close the circularity loop.

MIPOLAM COLLECTION

EPD PROGRAM AND PROGRAM OPERATOR	UL SOLUTIONS	https://www.ul.com/
NAME, ADDRESS, LOGO, AND WEBSITE	333 Pfingsten Road, Northbrook, IL 60611	https://spot.ul.com
GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER	General Program Instructions v.2.7 March 2022	
MANUFACTURER NAME AND ADDRESS	GERFLOR 1 Place Verrazzano, CS 20458, 69258 Lyon CEDEX	(09
DECLARATION NUMBER	4791306880.103.1	
DECLARED PRODUCT & FUNCTIONAL UNIT OR DECLARED UNIT	MIPOLAM COLLECTION The functional unit is one square meter of installe	ed product. The reference service life considered is 25 years.
REFERENCE PCR AND VERSION NUMBER		iles and Report Requirements. Version 4.0, UL Environnment. Edition, Dated September 28, 2018, UL Environnment.
DESCRIPTION OF PRODUCT APPLICATION/USE	•	of application including commercial and industrial applications. It is neference to the FCSS (Floor Covering Standard Symbols).
PRODUCT RSL DESCRIPTION (IF APPL.)	years. For this duration, two replacements are re	rs. According to UL PCR, the building Estimated Service Life (ESL) is 75 iquired ferent Service Life assumptions: 1 year and 75 years.
MARKETS OF APPLICABILITY	European Commercial market	
DATE OF ISSUE	Septemeber 4, 2024	
PERIOD OF VALIDITY	5 years	
EPD TYPE	Product-specific	
VARIABILITY OF REPORTED DATA	1 product(s) is considered in this EPD.	
EPD SCOPE	Cradle to Grave	
YEAR(S) OF REPORTED PRIMARY DATA	2023	
LCA SOFTWARE & VERSION NUMBER	Simapro 9	
LCI DATABASE(S) & VERSION NUMBER	Ecoinvent 3.8 – allocution cut-off by classification	1
LCIA METHODOLOGY & VERSION NUMBER	Method EN 15804 A2 EPD Ev-DEC 1.11 (EVEA)	
		UL Solutions
The PCR review was conducted by:		PCR Review Panel
		epd@ul.com
		0 210 10

This declaration was independently verified in accordance with ISO 14025: 2006. **EXTERNAL**

Cooper McCollum Cooper McCollum, UL Solutions

This life cycle assessment was conducted in accordance with ISO 14044 and the reference PCR by:

M Vag

Cara Vought, Sustainable Solutions Corporation

LIMITATIONS

□ INTERNAL

Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc.

Accuracy of Results: EPDs regularly rely on estimations of impacts; the level of accuracy in estimation of effect differs for any particular product line and reported impact.

Comparability: EPDs from different programs may not be comparable.

Comparison of the environmental performance of flooring products using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase as instructed under this PCR.

Full conformance with the PCR for "Building-Related Products and Services" allows EPD comparability only when all stages of a life cycle have been considered, when they comply with all referenced standards, use the same sub-category PCR, and use equivalent scenarios with respect to construction works. However, variations and deviations are possible. Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared.

Gerfior. MIPOLAM COLLECTION

TABLE OF CONTENTS

1.	Product Definition and Information	5
	1.1. Company Description and production site information	5
	1.2. Product Description	5
	1.3. Technical Specifications	6
	1.4. Product Certifications	7
	1.5. Product Classifications	7
2.	Life Cycle Assessment General Information	8
	2.1. Methodological Framework	8
	2.2. Declared Unit	9
	2.3. System Boundary	9
	2.4. Estimates and Assumptions	9
	2.5. Cut-off Criteria	10
	2.6. Data Sources	10
	2.7. Data Quality	10
	2.8. Period under Review	10
	2.9. Allocation	10
	2.10. Comparability (Optional)	11
3.	Life Cycle Assessment Background Information & Scenarios	12
	3.1. Material Composition & packaging (A1)	12
	3.2. Manufacturing (A3)	12
	3.3. Delivery (transport from the factory to the building site) (A4)	13
	3.4. Installation (A5)	14
	3.5. Use - Reference Service Life and Building Estimated Service Life (B2)	15
	3.6. Use – Cleaning (B2)	15
	3.7. Repair, replacement, refurbishment, reuse (B3-B5)	16
	3.8. Operational energy use (B6) and Operational water use (B7)	16
	3.9. Deconstruction (C1)	16
	3.10. Transport (C2) and end-of-life (C3-C4)	16
	3.11. Benefits and loads beyond system boundary (D)	17
4.	Life Cycle Assessment Results	19
	4.1. Summary of key GWP results	19
	4.2. Life Cycle Assessment – Environmental impacts	20
	4.2.1. Environmental impacts for 1 year	20
	4.2.1.1. Potential environmental impact in case of RECYCLING at end of use	20

Gerfior. MIPOLAM COLLECTION

	4.2.1.2.	Potential environmental impact in case of LANDFILL at end of use	21
	4.2.1.3.	Potential environmental impact in case of INCINERATION at end of use	22
	4.2.2. En	vironmental impacts for 75 years	23
	4.2.2.1.	Potential environmental impact in case of RECYCLING at end of use	23
	4.2.2.2.	Potential environmental impact in case of LANDFILL at end of use	24
	4.2.2.3.	Potential environmental impact in case of INCINERATION at end of use	25
	4.3. Life Cy	cle Assessment – Resources, wastes categories and outgoing flows	26
	4.3.1. Re	sources, wastes categories and outgoing flows for 1 year	26
	4.3.1.1.	Resources, waste categories and outgoing flows in case of RECYCLING at end of use	26
	4.3.1.2.	Resources, waste categories and outgoing flows in case of LANDFILL at end of use	27
	4.3.1.3.	Resources, waste categories and outgoing flows in case of INCINERATION at end of use	28
	4.3.2. Re	sources, waste categories and outgoing flows for 75 years	29
	4.3.2.1.	Resources, waste categories and outgoing flows in case of RECYCLING at end of use	29
	4.3.2.2.	Resources, waste categories and outgoing flows in case of LANDFILL at end of use	30
	4.3.2.3.	Resources, waste categories and outgoing flows in case of INCINERATION at end of use	31
5.	Life Cyc	le Assessment – Carbon emissions and removals	32
6.	LCA Inte	erpretation	32
7.	Additior	nal Environmental Information	33
	7.1. Enviro	nment and Health During Manufacturing	33
		nment and Health During Installation	
		nment and Health During the use stage	
8.	Further	Information	33
9.	Referen	Ces	33

MIPOLAM COLLECTION

1. Product Definition and Information

1.1. Company Description and production site information

The products are commercialized by Gerflor.

For over 80 years, the Gerflor Group has been developing, manufacturing and selling innovative, decorative and eco-responsible solutions. Its product portfolio encompasses flexible floors, wall protection and finishes. Gerflor supports professionals and individuals every day in every phase of their project, from product selection to end-of-life management and recycling solutions. As a European manufacturer, the Group employs more than 5000 people and distributes its products and services in over 100 countries.

Gerflor solutions can be found in Education, Healthcare, Retail, Sports, Hospitality, Industry, Offices, Transport, Public buildings and Housing.

Faced with the climate emergency and the scarcity of raw materials, the Group's ambition is now more than ever to reconcile sustainable and profitable growth with resolute and innovative approaches to reduce our environmental impact.

1.2. Product Description

This environmental product declaration covers Mipolam Collection:

- Mipolam Accord
- Mipolam Affinity
- Mipolam Biocontrol Clean
- Mipolam Biocontrol ESD+
- Mipolam Biocontrol EL5
- Mipolam Biocontrol performance
- Mipolam Bioplanet
- Mipolam Cosmo
- Mipolam EL5
- Mipolam EL7
- Mipolam Elegance
- Mipolam Elegance SD
- Mipolam Esprit
- Mipolam Planet
- Mipolam Symbioz
- Streamo Sailer
- Streamo Seacrosser

The products are homogeneous calendered vinyl floor coverings, available in rolls, for glued installation.

These products have a similar composition, the same thickness (2 mm) and the same surface treatment Evercare that provides easy maintenance and stain resistance. They have a different weight (between 2.7 kg/m² and 3.3 kg/m²).

They are 100% Reach compliant, phthalate-free, formaldehyde-free. This floorcovering are non-emissive products (below the level of VOC measurement accuracy).

The following figure shows MIPOLAM EUROPE product constructions:

MIPOLAM COLLECTION

Figure 1: Homogeneous vinyl flooring's illustration

(Mipolam Accord, Affinity, Biocontrol Clean, Biocontrol Performance, Bioplanet, Cosmo, EL7, Elegance, Elegance SD, Esprit, Planet, Symbioz, Streamo Sailer, Streamo Seacrosser)

Monolayer homogeneous flooring, pressed and calendered

Figure 2: Mipolam Biocontrol EL5, Biocontrol ESD+

Figure 3: Mipolam EL5

1.3. Technical Specifications

The product considered in this EPD meets or exceeds all technical requirements in EN ISO 10581– Homogeneous poly(vinyl chloride) floor covering — Specifications.

The average product declared in this EPD (based on sales distribution) meets the following technical specifications:

MIPOLAM COLLECTION

Name	Value	Unit
Product thickness	2	mm
Product Weight	2.91	kg/m²
Density	1453	kg/m ³
Width of sheet	200	cm
Lenght of sheet	20	lm

1.4. Product Certifications

The products considered in this EPD complies with the following codes or regulations :

- Floorscore,
- M1,
- IAC Gold (for Mipolam Accord, Affinity, Biocontrol Clean, Biocontrol performance, Planet, Cosmo, Esprit, Bio Planet, Symbioz, Troplan, EL7).

Specification Fire Testing:

- Class 1 when tested in accordance with ASTM E 648, Standard Test Method for Critical Radiant Flux
- Class 1 when tested in accordance with ASTM E 662, Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials
- EN 13501-1 Fire Behavior Bfl-S1.

Slip resistance: R9

1.5. Product Classifications

The Mipolam products are classified in accordance with EN ISO 10874: Resilient, textile and laminate floor coverings, and in reference to the FCSS (Floor Covering Standard Symbols) to be installed in various areas of application including industry and health, while the Streamo products are intended for the marine industry.

The product is classified according to the United Nations Standard Products and Service Code (UNSPSC) as « Vinyl Flooring »: UNSPSC Code 30161707. And according to Construction Specification Institute (CSI) as « Resilient flooring »: CSI Code 09 65 00.

<u>Gerflor</u>

MIPOLAM COLLECTION

2. Life Cycle Assessment General Information

2.1. Methodological Framework

A full Life Cycle Assessment has been performed according to ISO 14040, ISO 14044 and in compliance with EN15804.

This EPD covers the entire life cycle of the products from cradle to grave (modules A1 to D) excluding modules for which there are no inputs/outputs.

No known flows are deliberately excluded from this EPD. For these products, the stated Reference Service Life (RSL) is 25 years (see section 3.5).

Flow Diagram:

2.2. Declared Unit

Gerflor

The functional unit is one square meter of installed product. The reference service life considered is 25 years.

	Value	Unit
Functional Unit	1	m²
Mass	2.91	kg/m²

Description of declared unit :

Cover 1 m² of interior flooring with a vinyl floor covering product, with a surface mass between 2.7 and 3.3 kg/m², implemented according to the rule book, and contribute to the decoration and comfort of premises for a lifespan of 25 years, ensuring the performance described in European standard EN ISO 10581.

The product is suitable for installation in various application areas, including industry, health and marine environments.

2.3. System Boundary

EPD is declared from cradle to grave, including the following stages:

A1 – A3: includes the provision of all raw materials and their packaging, transport to the production site and energy consumption during the manufacturing of the product, as well as processing of waste generated by the factory.

A4 – A5: includes the transport from the factory to the final customer, packaging of the final product and the installation of the product, as well as all consumables and energy required, and processing of waste generated during the installation.

B1 – **B7**: includes provision and transport of all materials, products and services related to the use phase of the product, as well as their related energy and water consumption, and the processing of any resulting waste.

C1 – C4: includes provision and transport of all materials, products and services related to the end-of-life phase of the product, including energy and water consumption, as well as the end-of-life processing of the product.
 D: includes benefits coming from the wastes' end of life.

Scope of study: modules with no "X" in the table below have been considered but have no associated inputs/outputs, therefore do not appear in the results:

	Pro	Production Stage		Construction Process Stage		Use Stage End-of-Life Stage beyond			Use Stage					End-of-Life Stage			Benefits& loads beyond syst. Bound.
	Raw material supply	Transport to manufacturer	Manufacturing	Transport from gate to site	Assembly/Install	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use duringproduct use	Operational water use during product use	Deconstruction	Transport	Waste processing	Disposal	Reuse, recovery or recycling potential
Modules	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Accounted for:	х	х	х	Х	Х	Х*	х	Х*	х	Х*	Х*	Х*	х	х	Х*	х	Х

*module has been considered but has no associated inputs/outputs, therefore does not appear in the results.

2.4. Estimates and Assumptions

Estimates and assumptions are made for transport, installation, and deconstruction procedure. Details are provided in section 3.

MIPOLAM COLLECTION

2.5. Cut-off Criteria

The cut -off criteria shall be 1% of renewable and non-renewable primary energy usage and 1% of the total mass of thatunit process. The total neglected input flows per module shall be a maximum of 5% of energy usage and mass. For this study, all input and output flows have been considered. Raw materials are included as per the product composition provided by the manufacturer and the packaging of the final product. Energy and water consumptions have also been considered at 100% according to the data provided.

2.6. Data Sources

As a general rule, specific data derived from specific production processes or average data derived from specific production processes have been used as the first choice as a basis for calculating an EPD. To model the life cycle of the product in question, the software SimaPro 9, developed by PRé, has been used inconjunction with the LCA database ecoinvent v3.8.

2.7. Data Quality

The requirements for data quality and LCA data are in accordance with the specifications of the PCR.

Temporal Coverage : producer specific data is averaged over 1 year of production and from within the last 5 years (2023). Generic data is taken from the ecoinvent 3.8 database, the entirety of which was updated in 2021. Inputs and outputs from the system are accounted for over a period of 100 years from the year for which the data set is deemed relevant.

Technological Coverage : the technological coverage of the data reflects the physical reality of the declared product.

Geographical Coverage : whenever possible, country specific data reflecting the reality of the Gerflor supply chain has been used. If country specific data is unavailable, European regional data is used in preference to global data sources.

A third party verified ISO 14040/44 secondary LCI data sets contribute more than 67% of total impact (either at the unit process level or in aggregate) to any of the required impact categories identified by the applicable PCR.

2.8. Period under Review

Data have been reviewed for the production year 2023.

2.9. Allocation

Allocations when using secondary materials as raw materials:

The recycled content comes from external sources (offcuts from installation and removal of old coatings), the endof- waste status is considered at the level of the sorted material stock and no impact is assigned to the production of these offcuts.

Allocations in the plant (differentiation from other products manufactured in the plant):

The overall values for the factory's material and energy consumptions during a period of one year have been divided by the annual production of each product to supply a value per square meter of flooring produced. All factory data is measured in square meters, and it is assumed that the process consumptions are governed by area of flooring processed rather than mass.

Allocation of multi-input processes if performed during modelling:

Production offcuts: the scraps are components reintegrated into other products on other process lines. Since these

MIPOLAM COLLECTION

scraps are not sold externally, a physical allocation is made between the main product and the scraps. Thus, the overproduction to produce these losses is not considered in this case. The impacts of the production of these scraps are assigned to the system that uses them (other Gerflor products), so no impact is omitted.

Allocations of reuse, recycling and energy recovery:

Not relevant here.

2.10. Comparability (Optional)

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

<u>Gerflor</u>

MIPOLAM COLLECTION

3. Life Cycle Assessment Background Information & Scenarios

3.1. Material Composition & packaging (A1)

Product:

Component	Mass (%)	Mass (kg/m²)
PVC	35-40%	1.02 – 1.16
Plasticizer	15-20%	0.44 – 0.58
Mineral filler	40-45%	1.16 - 1.31
Stabilizer	<1%	<0.03
Additives	<1%	<0.03
Pigments	<3%	<0.09
Finish	<1%	<0.03
Recycled content*	24%	0.70
Packaging	<5%	<0.15

*Recycled content is pre-consumer waste.

Packaging:

The rolls are wrapped around a 100% recycled cardboard core and packed in wrapping paper ; the rolls are protected by cardboard mandrels and plastics end-caps.

As described in ULE Part A Requirements, the packaging waste scenario for European market is:

- 76.4% recycling, 16.4% landfilling and 7.2% incineration for carboard
- 24.8% recycling, 54.8% landfilling and 20.4% incineration for wood
- 37% recycling, 35% landfilling and 28% incineration for plastic

3.2. Manufacturing (A3)

The products are manufactured in Gerflor manufacturing plant, located in Germany or in France. The products are manufactured by calendering and/or pressing.

The production of the sheets is divided into the following stages:

- Mixing: binder, filler, additive, stabilizer, and pigments are mixed to obtain mixture
- Calendering and/or pressing
 - Calendering: the mixture is calendered to get the desired shape
 - Pressing: the components are sprinkled on the substrate and pressed at high temperature
- Finishing: application of the surface layer
- Shaping: rolls are cut at the desired dimensions
- Packaging

The following figure shows the production process diagram :

<u>Gerflor</u>

MIPOLAM COLLECTION

3.3. Delivery (transport from the factory to the building site) (A4)

The product are made in Germany or in France (depending on references) and sent to the European market. Distances taken in account are described below.

Gerflor MIPOLAM COLLECTION

Truck	VALUE	UNIT
Fuel type	Diesel, low sulfur	
Liters of fuel	26	l/100km
Vehicle type	16-32 metric ton EURO 6	
Transport distance	1037	km
Capacity utilization (including empty runs, mass based	36	%
Gross density of products transported	1453	kg/m3
Weight of products transported (if gross density not reported)	-	kg
Volume of products transported (if gross density not reported)	-	m3
Capacity utilization volume factor (factor: =1 or <1 or \ge 1 for compressed or nested packaging products)	<1	-
Boat		
Fuel type	Heavy Fuel Oil	
Liters of fuel	0.047	l/100km
Vehicle type	Transoceanic Ship	
Transport distance	171	km
Capacity utilization (including empty runs, mass based	100	%
Gross density of products transported	1453	kg/m3
Weight of products transported (if gross density not reported)	-	kg
Volume of products transported (if gross density not reported)	-	m3
Capacity utilization volume factor (factor: =1 or <1 or \ge 1 for compressed or nested packaging products)	<1	-

3.4. Installation (A5)

The product is installed by hand, using acrylic glue. During the installation, approximately 10% of the material is lost as off-cuts ; this waste is mainly sent to landfill.

Gerflor recommends using Gerflor Second Life program to recycle the off-cuts, where infrastructure exists. This program is available in several countries. It is a simple and free collection system for installation waste and end of life products. The waste is first sent to a dedicated recycling center. After recycling, it is reintroduced in new Gerflor products in substitution of virgin materials.

Installation into the building (A5) - Scenario	VALUE	UNIT
Ancillary materials : Acrylic glue	0.25	kg/m²
Net freshwater consumption specified by water source and fate (amount evaporated, amount disposed to sewer)	-	m3
Other resources	-	kg
Electricity consumption	-	kWh
Other energy carriers	-	MJ
Product loss per functional unit	0.291	kg
Waste materials at the construction site before waste processing, generated byproduct installation	0.142	kg
Output materials resulting from on-site waste processing (specified by route; e.g. forrecycling, energy recovery and/or disposal)	-	kg
Biogenic carbon contained in packaging	0.059	kg CO2
Direct emissions to ambient air, soil and water	-	kg
VOC emissions	-	kg/m²

Gerflor MIPC

MIPOLAM COLLECTION

3.5. Use - Reference Service Life and Building Estimated Service Life (B2)

Service Life	VALUE	UNIT
Product Reference Service Life (RSL)	25	years
Building estimated Service Life (ESL)	75	years

It should be noted that the service life may vary depending the amount and nature of floor traffic and the type and frequency of maintenance. The manufacturer has provided this service life based on his experience of flooring manufacture and supply. This RSL is applicable as long as the product use complies with ISO 14041 in accordance with the product's classification.

Declared product properties (at the gate) and finishes, etc.	Declared product properties aredescribed in Declaration of Performance (DOP), in accordance with EN 14041
Design application parameters (if instructed by the manufacturer), including references to the appropriate practices and application codes)	Products in accordance with EN 14041 and technical prescription of the manufacturer
An assumed quality of work, when installed in accordance with the manufacturer's instructions	Assumed to be installed according to the manufacturer's instructions
Outdoor environment, (if relevant for outdoor applications), e.g. weathering, pollutants, UV and wind exposure, building orientation, shading, temperature	Not relevant
Indoor environment, (if relevant for indoor applications), e.g. temperature, moisture,chemical exposure)	Use conditions in accordance with manufacturer prescriptions: see technical datasheet
Use conditions, e.g. frequency of use, mechanical exposure.	Use conditions in accordance with manufacturer prescriptions : see technical datasheet
Maintenance, e.g. required frequency, type and quality of replacement components	Maintenance scenario is defined in the table above

3.6. Use – Cleaning (B2)

Maintenance (B2) - Scenario	VALUE	UNIT
Maintenance process information	 Dry vaccum cleaning: 2/week Wet cleaning by hand: 1/week 	-
Maintenance cycle	3900	Number/ RSL
Maintenance cycle	11700	Number/ ESL
Net freshwater consumption specified by water source and fate (amount evaporated, amount disposed to sewer)	2.6	L/year
Ancillary materials specified by type (e.g. cleaning agent)	0 0	kg/year
Other resources	-	kg
Energy input, specified by activity, type and amount	0.26	kWh/year
Other energy carriers specified by type	-	kWh
Power output of equipment	-	kW
Waste materials from maintenance (specify materials)	-	kg
Direct emissions to ambient air, soil and water	-	kg

Gerflor, MIPOLAM COLLECTION

Further assumptions for scenario development (e.g. frequency and time period ofuse, number of occupants);

3.7. Repair, replacement, refurbishment, reuse (B3-B5)

Repair (B3): no data

Replacement (B4): product's life expectancy being 25 years and building's life expectancy being 75 years, 2 product replacements will be necessary. The impact of these replacements can be found in indicator B4 "Replacement". B2 "Maintenance" is also proportional to the number of years considered.

Replacement (B4) – Scenario	VALUE	UNIT
Reference Service Life	25	Years
Number of replacements over building estimated service life (75 years)	2	(ESL-RSL)-1
Energy input, specified by activity, type and amount	-	kWh
Net freshwater consumption specified by water source and fate (e.g., X m3 river water evaporated, X m3 city water disposed to sewer)	-	m3
Ancillary materials specified by type and amount: Acrylic glue 	- 0.5	Kg/m²
Replacement of worn parts, specify parts/materials	-	kg
Direct emissions to ambient air, soil and water	-	kg
Further assumptions for scenario development, e.g. frequency and time period of use	-	As appropriate

Refurbishment (B5) : no data.

3.8. Operational energy use (B6) and Operational water use (B7)

No data.

3.9. Deconstruction (C1)

Product deconstruction is carried out manually.

3.10. Transport (C2) and end-of-life (C3-C4)

Gerflor recommends using Gerflor Second Life program to recycle the product, where infrastructure exists. This program is available in several countries.

It is a simple and free collection system for installation waste and end of life products. The waste is first sent to a dedicated recycling center. After recycling, it is reintroduced in new Gerflor products in substitution of virgin materials.

When recycling is not an option, landfill and incineration are the other options.

3 end-of-life scenarios are therefore proposed in this EPD to address the different cases: recycling, landfill, or incineration.

According to the PCR UL Part A, 50% of the product should be recycled for Europe. There is no specific data for this

Gerflor MIPOLAM COLLECTION

distance for European market, so the North America's one, in PCR UL Part B, is assumed by default.

COLLECTION PROCESS		VALUE	UNIT
Collection process	Collected with mixed construction waste - Product	2.91	kg
Collection process	Collected with mixed construction waste - Glue	0.25	kg

RECYCLING SCENARIO	VALUE	UNIT
Distance to recycling center	161	km
Truck	16-32 metric ton Euro6	-
Recovery - Product: - Glue:	2.91 0.25	kg
Disposal	-	
LANDFILL SCENARIO Distance to landfill Truck	VALUE 161 16-32 metric ton Euro6	UNIT km
Recovery - Product: - Glue:	2.91 0.25	kg
Disposal	-	
INCINERATION SCENARIO	VALUE	UNIT
Distance to incineration center	161	km
Truck	16-32 metric ton Euro6	-
Recovery - Product: - Glue:	2.91 0.25	kg
Disposal	-	
BIOGENIC CARBON	VALUE	UNIT
Removals of biogenic carbon (excluding packaging)	0.0093	kg CO2

3.11. Benefits and loads beyond system boundary (D)

Reuse, recovery and/or recycling potentials (D) - scenarios	VALUE for recycling scenario	VALUE for landfill scenario	VALUE for incineration scenario	UNIT
Net energy benefit from energy recovery from waste treatment declared as exported energy in C3 (R>0.6)	-	-	-	MJ
Net energy benefit from thermal and electrical energy due to treatment of wastedeclared as exported energy in C4 (R<0.6)	-	-	2.28E+1	MJ
Net energy benefit from material flow declared in C3 for energy recovery	-	-	-	MJ

Gerflor, MIPOLAM COLLECTION

Process and conversion efficiencies	-	-	-
Further assumptions for scenario development (e.g. further processing technologies, assumptions on correction factors);	-	-	-

<u>Gerflor</u>

MIPOLAM COLLECTION

4. Life Cycle Assessment Results

The following results are given for a service life of 1 year and 75 years. 75 years results include 2 replacements based on a product reference service life of 25 years.

LCA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. All results should be used with caution because the uncertainties in the results are high.

Gerflor recommends using Gerflor Second Life program or any other program to recycle the product, where infrastructure exists. This program is available in several countries.

It is a simple and free collection system for installation waste and end of life products. The waste is first sent to a dedicated recycling center. After recycling, it is reintroduced in new Gerflor products in substitution of virgin materials. When recycling is not an option, landfill and incineration are the other options.

3 end-of-life scenarios are therefore proposed in this EPD to address the different cases: recycling (1), landfill (2), or incineration (3).

Results only vary in C phase.

4.1. Summary of key GWP results

For convenience, here is a summary of the key GWP results:

GLOBAL WARMING POTENTIAL (GWP) kg CO2 eq./m²	Total GWP, with recycling scenario	Total GWP, with landfill scenario	Total GWP, with incineration scenario
Use 1 year	7.47E+0	7.67E+0	1.19E+1
Use 25 years	9.94E+0	1.01E+1	1.44E+1
Use 75 years	2.98E+1	3.04E+1	4.32E+1

Gerflor. MIPOLAM COLLECTION

4.2. Life Cycle Assessment – Environmental impacts

4.2.1. Environmental impacts for 1 year

4.2.1.1. Potential environmental impact in case of RECYCLING at end of use

POTENTIAL ENVIRONMENTAL IMPACT - RECYCLING - 1 YEAR - per m²

Impacts			Production	Construct	tion	Use		End-of-life		D Benefits 8		
Impacts CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Maintenance (1 year)	C2 Transport C3 Waste processing C4 Disposa		C4 Disposal	load beyond system boundaries		
Climate change - GWP total	kg CO2 eq	7.47E+0	5.26E+0	5.17E-1	1.44E+0	1.03E-1	8.22E-2	5.81E-2	0.00E+0	-2.63E+0		
Climate change - GWP fossil	kg CO2 eq	7.03E+0	5.12E+0	5.16E-1	1.19E+0	1.02E-1	8.22E-2	2.53E-2	0.00E+0	-2.70E+0		
Climate change - GWP biogenic	kg CO2 eq	1.14E-1	-1.48E-1	1.63E-4	2.28E-1	5.48E-4	2.60E-5	3.27E-2	0.00E+0	6.85E-2		
Climate change -GWP land use and change	kg CO2 eq	3.28E-1	2.98E-1	2.12E-4	3.03E-2	2.43E-4	3.35E-5	5.90E-5	0.00E+0	-1.11E-3		
Ozone depletion	kg CFC11 eq	1.90E-6	1.52E-6	1.20E-7	2.34E-7	5.25E-9	1.92E-8	1.29E-9	0.00E+0	-9.51E-7		
Acidification	mol H+ eq	4.56E-2	3.11E-2	1.62E-3	1.19E-2	5.96E-4	2.35E-4	1.37E-4	0.00E+0	-1.52E-2		
Eutrophication, freshwater (P)	kg P eq	2.80E-4	2.12E-4	3.69E-6	4.79E-5	1.33E-5	5.91E-7	2.66E-6	0.00E+0	-3.69E-5		
Eutrophication, freshwater (PO4)	kg PO4 eq	8.59E-4	6.49E-4	1.13E-5	1.47E-4	4.09E-5	1.81E-6	8.16E-6	0.00E+0	-1.13E-4		
Eutrophication, marine	kg N eq	9.71E-3	7.74E-3	3.30E-4	1.44E-3	1.27E-4	4.68E-5	1.86E-5	0.00E+0	-2.03E-3		
Eutrophication, terrestrial	mol N eq	7.23E-2	5.51E-2	3.68E-3	1.19E-2	8.95E-4	5.21E-4	2.13E-4	0.00E+0	-2.27E-2		
Photochemical ozone formation	kg NMVOC eq	2.31E-2	1.70E-2	1.36E-3	4.17E-3	2.41E-4	2.00E-4	5.98E-5	0.00E+0	-1.34E-2		
Resource use, minerals and metals	kg Sb eq	1.02E-4	8.10E-5	1.88E-6	1.76E-5	9.78E-7	3.01E-7	7.17E-8	0.00E+0	-5.61E-5		
Resource use, fossils	MJ	1.55E+2	1.19E+2	7.88E+0	2.33E+1	2.19E+0	1.26E+0	5.35E-1	0.00E+0	-9.54E+1		
Water use	m3 depriv.	7.83E+0	6.47E+0	2.35E-2	1.29E+0	3.71E-2	3.76E-3	6.12E-3	0.00E+0	-2.43E+0		
Particulate matter	disease inc.	3.83E-7	2.60E-7	4.16E-8	7.24E-8	1.84E-9	6.67E-9	4.47E-10	0.00E+0	-1.19E-7		
Ionising radiation	kBq U-235 eq	4.24E-1	2.92E-1	3.42E-2	6.83E-2	1.96E-2	5.45E-3	4.73E-3	0.00E+0	1.65E-2		
Ecotoxicity, freshwater	CTUe	5.56E+1	4.38E+1	2.30E+0	8.88E+0	2.60E-1	3.67E-1	2.98E-2	0.00E+0	-2.94E+1		
Human toxicity, cancer	CTUh	2.30E-9	1.88E-9	9.26E-11	2.90E-10	1.52E-11	1.48E-11	5.19E-12	0.00E+0	1.46E-10		
Human toxicity, non-cancer	CTUh	6.55E-9	5.06E-9	2.33E-10	1.18E-9	3.57E-11	3.74E-11	4.67E-12	0.00E+0	-2.48E-9		
Land use	Pt	8.11E+1	6.29E+1	5.46E+0	1.13E+1	4.12E-1	8.76E-1	8.24E-2	0.00E+0	4.11E+0		

<u>Gerflor</u>

MIPOLAM COLLECTION

4.2.1.2. Potential environmental impact in case of LANDFILL at end of use

POTENTIAL ENVIRONMENTAL IMPACT - LANDFILL - 1 YEAR - per m²

			=							
			Production	Consti	ruction	Use		End-of-life		D Benefits &
Impacts CML v4.3	Units	Total	A1 – A3 Total Production.	A4 Transport	A5 Installation	B2 Maintenance (1 year)	C2 Transport	C3 Waste processing	C4 Disposal	load beyond system boundaries
Climate change - GWP total	kg CO2 eq	7.67E+0	5.26E+0	5.17E-1	1.44E+0	1.03E-1	8.22E-2	0.00E+0	2.60E-1	0.00E+0
Climate change - GWP fossil	kg CO2 eq	7.23E+0	5.12E+0	5.16E-1	1.19E+0	1.02E-1	8.22E-2	0.00E+0	2.27E-1	0.00E+0
Climate change - GWP biogenic	kg CO2 eq	1.14E-1	-1.48E-1	1.63E-4	2.28E-1	5.48E-4	2.60E-5	0.00E+0	3.26E-2	0.00E+0
Climate change -GWP land use and change	kg CO2 eq	3.28E-1	2.98E-1	2.12E-4	3.03E-2	2.43E-4	3.35E-5	0.00E+0	6.90E-6	0.00E+0
Ozone depletion	kg CFC11 eq	1.91E-6	1.52E-6	1.20E-7	2.34E-7	5.25E-9	1.92E-8	0.00E+0	9.79E-9	0.00E+0
Acidification	mol H+ eq	4.57E-2	3.11E-2	1.62E-3	1.19E-2	5.96E-4	2.35E-4	0.00E+0	2.35E-4	0.00E+0
Eutrophication, freshwater (P)	kg P eq	2.77E-4	2.12E-4	3.69E-6	4.79E-5	1.33E-5	5.91E-7	0.00E+0	2.28E-7	0.00E+0
Eutrophication, freshwater (PO4)	kg PO4 eq	8.51E-4	6.49E-4	1.13E-5	1.47E-4	4.09E-5	1.81E-6	0.00E+0	6.99E-7	0.00E+0
Eutrophication, marine	kg N eq	9.86E-3	7.74E-3	3.30E-4	1.44E-3	1.27E-4	4.68E-5	0.00E+0	1.75E-4	0.00E+0
Eutrophication, terrestrial	mol N eq	7.31E-2	5.51E-2	3.68E-3	1.19E-2	8.95E-4	5.21E-4	0.00E+0	9.48E-4	0.00E+0
Photochemical ozone formation	kg NMVOC eq	2.33E-2	1.70E-2	1.36E-3	4.17E-3	2.41E-4	2.00E-4	0.00E+0	3.27E-4	0.00E+0
Resource use, minerals and metals	kg Sb eq	1.02E-4	8.10E-5	1.88E-6	1.76E-5	9.78E-7	3.01E-7	0.00E+0	9.29E-8	0.00E+0
Resource use, fossils	MJ	1.55E+2	1.19E+2	7.88E+0	2.33E+1	2.19E+0	1.26E+0	0.00E+0	7.07E-1	0.00E+0
Water use	m3 depriv.	7.83E+0	6.47E+0	2.35E-2	1.29E+0	3.71E-2	3.76E-3	0.00E+0	3.34E-3	0.00E+0
Particulate matter	disease inc.	3.87E-7	2.60E-7	4.16E-8	7.24E-8	1.84E-9	6.67E-9	0.00E+0	5.11E-9	0.00E+0
Ionising radiation	kBq U-235 eq	4.23E-1	2.92E-1	3.42E-2	6.83E-2	1.96E-2	5.45E-3	0.00E+0	3.26E-3	0.00E+0
Ecotoxicity, freshwater	CTUe	6.65E+1	4.38E+1	2.30E+0	8.88E+0	2.60E-1	3.67E-1	0.00E+0	1.09E+1	0.00E+0
Human toxicity, cancer	CTUh	2.30E-9	1.88E-9	9.26E-11	2.90E-10	1.52E-11	1.48E-11	0.00E+0	6.88E-12	0.00E+0
Human toxicity, non-cancer	CTUh	6.82E-9	5.06E-9	2.33E-10	1.18E-9	3.57E-11	3.74E-11	0.00E+0	2.72E-10	0.00E+0
Land use	Pt	8.28E+1	6.29E+1	5.46E+0	1.13E+1	4.12E-1	8.76E-1	0.00E+0	1.84E+0	0.00E+0

Gerflor. MIPOLAM COLLECTION

4.2.1.3. Potential environmental impact in case of INCINERATION at end of use

POTENTIAL ENVIRONMENTAL IMPACT - INCINERATION - 1 YEAR - per m²

Lucce Luc			Production	Const	ruction	Use		End-of-life		D Benefits 8
Impacts CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Maintenance (1 year)	C2 Transport	C3 Waste processing	C4 Disposal	load beyon system boundaries
Climate change - GWP total	kg CO2 eq	1.19E+1	5.26E+0	5.17E-1	1.44E+0	1.03E-1	8.22E-2	0.00E+0	4.52E+0	-4.13E+0
Climate change - GWP fossil	kg CO2 eq	1.15E+1	5.12E+0	5.16E-1	1.19E+0	1.02E-1	8.22E-2	0.00E+0	4.49E+0	-4.11E+0
Climate change - GWP biogenic	kg CO2 eq	1.16E-1	-1.48E-1	1.63E-4	2.28E-1	5.48E-4	2.60E-5	0.00E+0	3.47E-2	-1.49E-2
Climate change -GWP land use and change	kg CO2 eq	3.30E-1	2.98E-1	2.12E-4	3.03E-2	2.43E-4	3.35E-5	0.00E+0	1.38E-3	-6.90E-3
Ozone depletion	kg CFC11 eq	2.34E-6	1.52E-6	1.20E-7	2.34E-7	5.25E-9	1.92E-8	0.00E+0	4.37E-7	-3.76E-7
Acidification	mol H+ eq	5.08E-2	3.11E-2	1.62E-3	1.19E-2	5.96E-4	2.35E-4	0.00E+0	5.31E-3	-2.18E-2
Eutrophication, freshwater (P)	kg P eq	3.15E-4	2.12E-4	3.69E-6	4.79E-5	1.33E-5	5.91E-7	0.00E+0	3.80E-5	-3.12E-4
Eutrophication, freshwater (PO4)	kg PO4 eq	9.67E-4	6.49E-4	1.13E-5	1.47E-4	4.09E-5	1.81E-6	0.00E+0	1.17E-4	-9.57E-4
Eutrophication, marine	kg N eq	1.10E-2	7.74E-3	3.30E-4	1.44E-3	1.27E-4	4.68E-5	0.00E+0	1.30E-3	-2.62E-3
Eutrophication, terrestrial	mol N eq	8.66E-2	5.51E-2	3.68E-3	1.19E-2	8.95E-4	5.21E-4	0.00E+0	1.44E-2	-2.98E-2
Photochemical ozone formation	kg NMVOC eq	2.69E-2	1.70E-2	1.36E-3	4.17E-3	2.41E-4	2.00E-4	0.00E+0	3.86E-3	-8.57E-3
Resource use, minerals and metals	kg Sb eq	1.19E-4	8.10E-5	1.88E-6	1.76E-5	9.78E-7	3.01E-7	0.00E+0	1.74E-5	-7.22E-6
Resource use, fossils	MJ	1.64E+2	1.19E+2	7.88E+0	2.33E+1	2.19E+0	1.26E+0	0.00E+0	9.91E+0	-8.04E+1
Water use	m3 depriv.	8.54E+0	6.47E+0	2.35E-2	1.29E+0	3.71E-2	3.76E-3	0.00E+0	7.17E-1	-6.80E-1
Particulate matter	disease inc.	4.26E-7	2.60E-7	4.16E-8	7.24E-8	1.84E-9	6.67E-9	0.00E+0	4.33E-8	-8.83E-8
onising radiation	kBq U-235 eq	4.62E-1	2.92E-1	3.42E-2	6.83E-2	1.96E-2	5.45E-3	0.00E+0	4.26E-2	-6.01E-1
Ecotoxicity, freshwater	CTUe	2.23E+2	4.38E+1	2.30E+0	8.88E+0	2.60E-1	3.67E-1	0.00E+0	1.67E+2	-5.45E+0
Human toxicity, cancer	CTUh	3.29E-9	1.88E-9	9.26E-11	2.90E-10	1.52E-11	1.48E-11	0.00E+0	1.00E-9	-3.94E-10
Human toxicity, non-cancer	CTUh	6.98E-9	5.06E-9	2.33E-10	1.18E-9	3.57E-11	3.74E-11	0.00E+0	4.33E-10	-6.08E-10
Land use	Pt	8.42E+1	6.29E+1	5.46E+0	1.13E+1	4.12E-1	8.76E-1	0.00E+0	3.23E+0	-1.03E+1

Gerflor. MIPOLAM COLLECTION

4.2.2. Environmental impacts for 75 years

4.2.2.1. Potential environmental impact in case of RECYCLING at end of use

POTENTIAL ENVIRONMENTAL IMPACT - RECYCLING - 75 YEARS - per m²

luunaata			Production	Const	uction	Us	e		End-of-life		D Benefits &
Impacts CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (75 years)	B4 Replace (75 years)	C2 Transport	C3 Waste processing	C4 Disposal	load beyond system boundaries
Climate change - GWP total	kg CO2 eq	2.98E+1	5.26E+0	5.17E-1	1.44E+0	7.71E+0	1.47E+1	8.22E-2	5.81E-2	0.00E+0	-2.63E+0
Climate change - GWP fossil	kg CO2 eq	2.84E+1	5.12E+0	5.16E-1	1.19E+0	7.65E+0	1.38E+1	8.22E-2	2.53E-2	0.00E+0	-2.70E+0
Climate change - GWP biogenic	kg CO2 eq	3.81E-1	-1.48E-1	1.63E-4	2.28E-1	4.11E-2	2.26E-1	2.60E-5	3.27E-2	0.00E+0	6.85E-2
Climate change -GWP land use and change	kg CO2 eq	1.00E+0	2.98E-1	2.12E-4	3.03E-2	1.82E-2	6.56E-1	3.35E-5	5.90E-5	0.00E+0	-1.11E-3
Ozone depletion	kg CFC11 eq	6.09E-6	1.52E-6	1.20E-7	2.34E-7	3.94E-7	3.80E-6	1.92E-8	1.29E-9	0.00E+0	-9.51E-7
Acidification	mol H+ eq	1.80E-1	3.11E-2	1.62E-3	1.19E-2	4.47E-2	9.00E-2	2.35E-4	1.37E-4	0.00E+0	-1.52E-2
Eutrophication, freshwater (P)	kg P eq	1.80E-3	2.12E-4	3.69E-6	4.79E-5	9.99E-4	5.33E-4	5.91E-7	2.66E-6	0.00E+0	-3.69E-5
Eutrophication, freshwater (PO4)	kg PO4 eq	5.52E-3	6.49E-4	1.13E-5	1.47E-4	3.07E-3	1.64E-3	1.81E-6	8.16E-6	0.00E+0	-1.13E-4
Eutrophication, marine	kg N eq	3.83E-2	7.74E-3	3.30E-4	1.44E-3	9.55E-3	1.92E-2	4.68E-5	1.86E-5	0.00E+0	-2.03E-3
Eutrophication, terrestrial	mol N eq	2.81E-1	5.51E-2	3.68E-3	1.19E-2	6.72E-2	1.43E-1	5.21E-4	2.13E-4	0.00E+0	-2.27E-2
Photochemical ozone formation	kg NMVOC eq	8.65E-2	1.70E-2	1.36E-3	4.17E-3	1.80E-2	4.56E-2	2.00E-4	5.98E-5	0.00E+0	-1.34E-2
Resource use, minerals and metals	kg Sb eq	3.76E-4	8.10E-5	1.88E-6	1.76E-5	7.33E-5	2.02E-4	3.01E-7	7.17E-8	0.00E+0	-5.61E-5
Resource use, fossils	MJ	6.22E+2	1.19E+2	7.88E+0	2.33E+1	1.64E+2	3.05E+2	1.26E+0	5.35E-1	0.00E+0	-9.54E+1
Water use	m3 depriv.	2.62E+1	6.47E+0	2.35E-2	1.29E+0	2.78E+0	1.56E+1	3.76E-3	6.12E-3	0.00E+0	-2.43E+0
Particulate matter	disease inc.	1.28E-6	2.60E-7	4.16E-8	7.24E-8	1.38E-7	7.62E-7	6.67E-9	4.47E-10	0.00E+0	-1.19E-7
Ionising radiation	kBq U-235 eq	2.68E+0	2.92E-1	3.42E-2	6.83E-2	1.47E+0	8.10E-1	5.45E-3	4.73E-3	0.00E+0	1.65E-2
Ecotoxicity, freshwater	CTUe	1.86E+2	4.38E+1	2.30E+0	8.88E+0	1.95E+1	1.11E+2	3.67E-1	2.98E-2	0.00E+0	-2.94E+1
Human toxicity, cancer	CTUh	7.99E-9	1.88E-9	9.26E-11	2.90E-10	1.14E-9	4.56E-9	1.48E-11	5.19E-12	0.00E+0	1.46E-10
Human toxicity, non-cancer	CTUh	2.22E-8	5.06E-9	2.33E-10	1.18E-9	2.68E-9	1.30E-8	3.74E-11	4.67E-12	0.00E+0	-2.48E-9
Land use	Pt	2.73E+2	6.29E+1	5.46E+0	1.13E+1	3.09E+1	1.61E+2	8.76E-1	8.24E-2	0.00E+0	4.11E+0

Gerflor. MIPO

MIPOLAM COLLECTION

4.2.2.2. Potential environmental impact in case of LANDFILL at end of use

POTENTIAL ENVIRONMENTAL IMPACT - LANDFILL - 75 YEARS - per m²

Impacts			Production	Const	ruction	Us	e		End-of-life		D Benefits &
Impacts CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (75 years)	B4 Replace (75 years)	C2 Transport	C3 Waste processing	C4 Disposal	load beyond system boundaries
Climate change - GWP total	kg CO2 eq	3.04E+1	5.26E+0	5.17E-1	1.44E+0	7.71E+0	1.51E+1	8.22E-2	0.00E+0	2.60E-1	0.00E+0
Climate change - GWP fossil	kg CO2 eq	2.90E+1	5.12E+0	5.16E-1	1.19E+0	7.65E+0	1.43E+1	8.22E-2	0.00E+0	2.27E-1	0.00E+0
Climate change - GWP biogenic	kg CO2 eq	3.80E-1	-1.48E-1	1.63E-4	2.28E-1	4.11E-2	2.26E-1	2.60E-5	0.00E+0	3.26E-2	0.00E+0
Climate change -GWP land use and change	kg CO2 eq	1.00E+0	2.98E-1	2.12E-4	3.03E-2	1.82E-2	6.56E-1	3.35E-5	0.00E+0	6.90E-6	0.00E+0
Ozone depletion	kg CFC11 eq	6.12E-6	1.52E-6	1.20E-7	2.34E-7	3.94E-7	3.81E-6	1.92E-8	0.00E+0	9.79E-9	0.00E+0
Acidification	mol H+ eq	1.80E-1	3.11E-2	1.62E-3	1.19E-2	4.47E-2	9.02E-2	2.35E-4	0.00E+0	2.35E-4	0.00E+0
Eutrophication, freshwater (P)	kg P eq	1.79E-3	2.12E-4	3.69E-6	4.79E-5	9.99E-4	5.28E-4	5.91E-7	0.00E+0	2.28E-7	0.00E+0
Eutrophication, freshwater (PO4)	kg PO4 eq	5.50E-3	6.49E-4	1.13E-5	1.47E-4	3.07E-3	1.62E-3	1.81E-6	0.00E+0	6.99E-7	0.00E+0
Eutrophication, marine	kg N eq	3.88E-2	7.74E-3	3.30E-4	1.44E-3	9.55E-3	1.95E-2	4.68E-5	0.00E+0	1.75E-4	0.00E+0
Eutrophication, terrestrial	mol N eq	2.84E-1	5.51E-2	3.68E-3	1.19E-2	6.72E-2	1.44E-1	5.21E-4	0.00E+0	9.48E-4	0.00E+0
Photochemical ozone formation	kg NMVOC eq	8.73E-2	1.70E-2	1.36E-3	4.17E-3	1.80E-2	4.62E-2	2.00E-4	0.00E+0	3.27E-4	0.00E+0
Resource use, minerals and metals	kg Sb eq	3.76E-4	8.10E-5	1.88E-6	1.76E-5	7.33E-5	2.02E-4	3.01E-7	0.00E+0	9.29E-8	0.00E+0
Resource use, fossils	MJ	6.22E+2	1.19E+2	7.88E+0	2.33E+1	1.64E+2	3.05E+2	1.26E+0	0.00E+0	7.07E-1	0.00E+0
Water use	m3 depriv.	2.62E+1	6.47E+0	2.35E-2	1.29E+0	2.78E+0	1.56E+1	3.76E-3	0.00E+0	3.34E-3	0.00E+0
Particulate matter	disease inc.	1.29E-6	2.60E-7	4.16E-8	7.24E-8	1.38E-7	7.71E-7	6.67E-9	0.00E+0	5.11E-9	0.00E+0
Ionising radiation	kBq U-235 eq	2.68E+0	2.92E-1	3.42E-2	6.83E-2	1.47E+0	8.07E-1	5.45E-3	0.00E+0	3.26E-3	0.00E+0
Ecotoxicity, freshwater	CTUe	2.18E+2	4.38E+1	2.30E+0	8.88E+0	1.95E+1	1.32E+2	3.67E-1	0.00E+0	1.09E+1	0.00E+0
Human toxicity, cancer	CTUh	7.99E-9	1.88E-9	9.26E-11	2.90E-10	1.14E-9	4.57E-9	1.48E-11	0.00E+0	6.88E-12	0.00E+0
Human toxicity, non-cancer	CTUh	2.30E-8	5.06E-9	2.33E-10	1.18E-9	2.68E-9	1.36E-8	3.74E-11	0.00E+0	2.72E-10	0.00E+0
Land use	Pt	2.78E+2	6.29E+1	5.46E+0	1.13E+1	3.09E+1	1.65E+2	8.76E-1	0.00E+0	1.84E+0	0.00E+0

Gerflor. MIPOLAM COLLECTION

4.2.2.3. Potential environmental impact in case of INCINERATION at end of use

POTENTIAL ENVIRONMENTAL IMPACT - INCINERATION - 75 YEARS - per m²

			Production	Const	ruction	Us	e		End-of-life		D Benefits &
Impacts CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (75 years)	B4 Replace (75 years)	C2 Transport	C3 Waste processing	C4 Disposal	load beyond system boundaries
Climate change - GWP total	kg CO2 eq	4.32E+1	5.26E+0	5.17E-1	1.44E+0	7.71E+0	2.37E+1	8.22E-2	0.00E+0	4.52E+0	-4.13E+0
Climate change - GWP fossil	kg CO2 eq	4.18E+1	5.12E+0	5.16E-1	1.19E+0	7.65E+0	2.28E+1	8.22E-2	0.00E+0	4.49E+0	-4.11E+0
Climate change - GWP biogenic	kg CO2 eq	3.87E-1	-1.48E-1	1.63E-4	2.28E-1	4.11E-2	2.30E-1	2.60E-5	0.00E+0	3.47E-2	-1.49E-2
Climate change -GWP land use and change	kg CO2 eq	1.01E+0	2.98E-1	2.12E-4	3.03E-2	1.82E-2	6.59E-1	3.35E-5	0.00E+0	1.38E-3	-6.90E-3
Ozone depletion	kg CFC11 eq	7.40E-6	1.52E-6	1.20E-7	2.34E-7	3.94E-7	4.67E-6	1.92E-8	0.00E+0	4.37E-7	-3.76E-7
Acidification	mol H+ eq	1.95E-1	3.11E-2	1.62E-3	1.19E-2	4.47E-2	1.00E-1	2.35E-4	0.00E+0	5.31E-3	-2.18E-2
Eutrophication, freshwater (P)	kg P eq	1.90E-3	2.12E-4	3.69E-6	4.79E-5	9.99E-4	6.04E-4	5.91E-7	0.00E+0	3.80E-5	-3.12E-4
Eutrophication, freshwater (PO4)	kg PO4 eq	5.85E-3	6.49E-4	1.13E-5	1.47E-4	3.07E-3	1.85E-3	1.81E-6	0.00E+0	1.17E-4	-9.57E-4
Eutrophication, marine	kg N eq	4.21E-2	7.74E-3	3.30E-4	1.44E-3	9.55E-3	2.17E-2	4.68E-5	0.00E+0	1.30E-3	-2.62E-3
Eutrophication, terrestrial	mol N eq	3.24E-1	5.51E-2	3.68E-3	1.19E-2	6.72E-2	1.71E-1	5.21E-4	0.00E+0	1.44E-2	-2.98E-2
Photochemical ozone formation	kg NMVOC eq	9.79E-2	1.70E-2	1.36E-3	4.17E-3	1.80E-2	5.32E-2	2.00E-4	0.00E+0	3.86E-3	-8.57E-3
Resource use, minerals and metals	kg Sb eq	4.28E-4	8.10E-5	1.88E-6	1.76E-5	7.33E-5	2.36E-4	3.01E-7	0.00E+0	1.74E-5	-7.22E-6
Resource use, fossils	MJ	6.50E+2	1.19E+2	7.88E+0	2.33E+1	1.64E+2	3.24E+2	1.26E+0	0.00E+0	9.91E+0	-8.04E+1
Water use	m3 depriv.	2.83E+1	6.47E+0	2.35E-2	1.29E+0	2.78E+0	1.70E+1	3.76E-3	0.00E+0	7.17E-1	-6.80E-1
Particulate matter	disease inc.	1.41E-6	2.60E-7	4.16E-8	7.24E-8	1.38E-7	8.48E-7	6.67E-9	0.00E+0	4.33E-8	-8.83E-8
Ionising radiation	kBq U-235 eq	2.80E+0	2.92E-1	3.42E-2	6.83E-2	1.47E+0	8.85E-1	5.45E-3	0.00E+0	4.26E-2	-6.01E-1
Ecotoxicity, freshwater	CTUe	6.87E+2	4.38E+1	2.30E+0	8.88E+0	1.95E+1	4.45E+2	3.67E-1	0.00E+0	1.67E+2	-5.45E+0
Human toxicity, cancer	CTUh	1.10E-8	1.88E-9	9.26E-11	2.90E-10	1.14E-9	6.55E-9	1.48E-11	0.00E+0	1.00E-9	-3.94E-10
Human toxicity, non-cancer	CTUh	2.35E-8	5.06E-9	2.33E-10	1.18E-9	2.68E-9	1.39E-8	3.74E-11	0.00E+0	4.33E-10	-6.08E-10
Land use	Pt	2.82E+2	6.29E+1	5.46E+0	1.13E+1	3.09E+1	1.68E+2	8.76E-1	0.00E+0	3.23E+0	-1.03E+1

Gerflor.

MIPOLAM COLLECTION

4.3. Life Cycle Assessment – Resources, wastes categories and outgoing flows

4.3.1. Resources, wastes categories and outgoing flows for 1 year

4.3.1.1. Resources, waste categories and outgoing flows in case of RECYCLING at end of use

RESOURCES, WASTES CATEGORIES AND OUTGOING FLOWS - RECYCLING - 1 YEAR - per m²

Impacts			Production	Const	ruction	Use	End-of-life			D Benefits & load beyond
CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (1 year)	C2 Transport	C3 Waste processing	C4 Disposal	system boundaries
Renewable primary energy excl. RM	kg CO2 eq	2.47E+1	2.10E+1	1.12E-1	3.05E+0	4.49E-1	1.80E-2	9.38E-2	0.00E+0	-4.69E-1
Renewable primary energy used as RM	kg CO2 eq	7.79E+0	8.83E+0	0.00E+0	-1.04E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total renewable primary energy	kg CO2 eq	3.25E+1	2.98E+1	1.12E-1	2.01E+0	4.49E-1	1.80E-2	9.38E-2	0.00E+0	-4.69E-1
Non renewable primary energy excl. RM	kg CO2 eq	8.97E+1	6.89E+1	7.88E+0	8.99E+0	2.19E+0	1.26E+0	5.35E-1	0.00E+0	-6.40E+1
Non renewable primary energy used as RM	kg CFC11 eq	6.56E+1	5.12E+1	0.00E+0	1.44E+1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	-3.14E+1
Total non renewable primary energy	mol H+ eq	1.55E+2	1.20E+2	7.88E+0	2.34E+1	2.19E+0	1.26E+0	5.35E-1	0.00E+0	-9.54E+1
Use of secondary material	kg P eq	1.51E-1	1.38E-1	0.00E+0	1.38E-2	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of renewable secondary fuels	kg PO4 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of non renewable secondary fuels	kg N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Recovered energy	mol N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Net use of fresh water	kg NMVOC eq	1.73E-1	1.39E-1	8.88E-4	3.06E-2	2.18E-3	1.42E-4	4.58E-4	0.00E+0	-4.69E-2
Hazardous waste disposed	kg Sb eq	4.43E-1	3.11E-1	5.79E-3	1.21E-1	2.67E-3	9.21E-4	8.44E-4	0.00E+0	-6.06E-2
Non hazardous waste disposed	MJ	5.40E+0	2.33E+0	4.55E-1	2.49E+0	4.03E-2	7.30E-2	8.83E-3	0.00E+0	-8.19E-1
Radioactive waste disposed (High)	m3 depriv.	6.95E-5	5.50E-5	5.83E-7	9.69E-6	3.37E-6	9.34E-8	8.12E-7	0.00E+0	-2.40E-6
Radioactive waste disposed (Inter-Low)	disease inc.	3.93E-4	2.52E-4	5.27E-5	6.48E-5	1.27E-5	8.39E-6	3.07E-6	0.00E+0	1.20E-5
Components for re-use	kBq U-235 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for recycling	CTUe	3.29E+0	2.06E-2	0.00E+0	1.09E-1	0.00E+0	0.00E+0	3.16E+0	0.00E+0	0.00E+0
Materials for energy recovery	CTUh	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Exported energy	CTUh	1.44E-1	7.17E-2	0.00E+0	7.20E-2	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0

Gerflor. MIPOLAM COLLECTION

4.3.1.2. Resources, waste categories and outgoing flows in case of LANDFILL at end of use

RESOURCES, WASTES CATEGORIES AND OUTGOING FLOWS - LANDFILL - 1 YEAR - per m²

Impacts			Production	Const	ruction	Use		End-of-life		D Benefits & load beyond
CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (1 year)	C2 Transport	C3 Waste processing	C4 Disposal	system boundaries
Renewable primary energy excl. RM	kg CO2 eq	2.46E+1	2.10E+1	1.12E-1	3.05E+0	4.49E-1	1.80E-2	0.00E+0	3.12E-2	0.00E+0
Renewable primary energy used as RM	kg CO2 eq	7.79E+0	8.83E+0	0.00E+0	-1.04E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total renewable primary energy	kg CO2 eq	3.24E+1	2.98E+1	1.12E-1	2.01E+0	4.49E-1	1.80E-2	0.00E+0	3.12E-2	0.00E+0
Non renewable primary energy excl. RM	kg CO2 eq	8.99E+1	6.89E+1	7.88E+0	8.99E+0	2.19E+0	1.26E+0	0.00E+0	7.07E-1	0.00E+0
Non renewable primary energy used as RM	kg CFC11 eq	6.56E+1	5.12E+1	0.00E+0	1.44E+1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total non renewable primary energy	mol H+ eq	1.55E+2	1.20E+2	7.88E+0	2.34E+1	2.19E+0	1.26E+0	0.00E+0	7.07E-1	0.00E+0
Use of secondary material	kg P eq	1.51E-1	1.38E-1	0.00E+0	1.38E-2	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of renewable secondary fuels	kg PO4 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of non renewable secondary fuels	kg N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Recovered energy	mol N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Net use of fresh water	kg NMVOC eq	1.74E-1	1.39E-1	8.88E-4	3.06E-2	2.18E-3	1.42E-4	0.00E+0	8.96E-4	0.00E+0
Hazardous waste disposed	kg Sb eq	4.43E-1	3.11E-1	5.79E-3	1.21E-1	2.67E-3	9.21E-4	0.00E+0	8.15E-4	0.00E+0
Non hazardous waste disposed	MJ	8.56E+0	2.33E+0	4.55E-1	2.49E+0	4.03E-2	7.30E-2	0.00E+0	3.17E+0	0.00E+0
Radioactive waste disposed (High)	m3 depriv.	6.88E-5	5.50E-5	5.83E-7	9.69E-6	3.37E-6	9.34E-8	0.00E+0	8.24E-8	0.00E+0
Radioactive waste disposed (Inter-Low)	disease inc.	3.95E-4	2.52E-4	5.27E-5	6.48E-5	1.27E-5	8.39E-6	0.00E+0	4.49E-6	0.00E+0
Components for re-use	kBq U-235 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for recycling	CTUe	1.30E-1	2.06E-2	0.00E+0	1.09E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for energy recovery	CTUh	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Exported energy	CTUh	1.44E-1	7.17E-2	0.00E+0	7.20E-2	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0

Gerflor MIPOLAM COLLECTION

4.3.1.3. Resources, waste categories and outgoing flows in case of INCINERATION at end of use

RESOURCES, WASTES CATEGORIES AND OUTGOING FLOWS - INCINERATION - 1 YEAR - per m²

Impacts			Production	Const	ruction	Use		End-of-life		D Benefits & load beyond
CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (1 year)	C2 Transport	C3 Waste processing	C4 Disposal	system boundaries
Renewable primary energy excl. RM	kg CO2 eq	2.57E+1	2.10E+1	1.12E-1	3.05E+0	4.49E-1	1.80E-2	0.00E+0	1.11E+0	-1.11E+1
Renewable primary energy used as RM	kg CO2 eq	7.79E+0	8.83E+0	0.00E+0	-1.04E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total renewable primary energy	kg CO2 eq	3.35E+1	2.98E+1	1.12E-1	2.01E+0	4.49E-1	1.80E-2	0.00E+0	1.11E+0	-1.11E+1
Non renewable primary energy excl. RM	kg CO2 eq	1.67E+2	6.89E+1	7.88E+0	8.99E+0	2.19E+0	1.26E+0	0.00E+0	7.75E+1	-8.04E+1
Non renewable primary energy used as RM	kg CFC11 eq	-2.06E+0	5.12E+1	0.00E+0	1.44E+1	0.00E+0	0.00E+0	0.00E+0	-6.76E+1	0.00E+0
Total non renewable primary energy	mol H+ eq	1.65E+2	1.20E+2	7.88E+0	2.34E+1	2.19E+0	1.26E+0	0.00E+0	9.91E+0	-8.04E+1
Use of secondary material	kg P eq	1.51E-1	1.38E-1	0.00E+0	1.38E-2	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of renewable secondary fuels	kg PO4 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of non renewable secondary fuels	kg N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Recovered energy	mol N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Net use of fresh water	kg NMVOC eq	1.93E-1	1.39E-1	8.88E-4	3.06E-2	2.18E-3	1.42E-4	0.00E+0	2.06E-2	-5.30E-2
Hazardous waste disposed	kg Sb eq	1.80E+0	3.11E-1	5.79E-3	1.21E-1	2.67E-3	9.21E-4	0.00E+0	1.36E+0	-6.44E-2
Non hazardous waste disposed	MJ	5.99E+0	2.33E+0	4.55E-1	2.49E+0	4.03E-2	7.30E-2	0.00E+0	5.98E-1	-8.34E-1
Radioactive waste disposed (High)	m3 depriv.	7.48E-5	5.50E-5	5.83E-7	9.69E-6	3.37E-6	9.34E-8	0.00E+0	6.06E-6	-9.64E-5
Radioactive waste disposed (Inter-Low)	disease inc.	4.23E-4	2.52E-4	5.27E-5	6.48E-5	1.27E-5	8.39E-6	0.00E+0	3.32E-5	-4.31E-4
Components for re-use	kBq U-235 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for recycling	CTUe	1.30E-1	2.06E-2	0.00E+0	1.09E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for energy recovery	CTUh	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Exported energy	CTUh	2.30E+1	7.17E-2	0.00E+0	7.20E-2	0.00E+0	0.00E+0	0.00E+0	2.28E+1	0.00E+0

Gerflor.

MIPOLAM COLLECTION

- 4.3.2. Resources, waste categories and outgoing flows for 75 years
 - 4.3.2.1. Resources, waste categories and outgoing flows in case of RECYCLING at end of use

RESOURCES, WASTES CATEGORIES AND OUTGOING FLOWS - RECYCLING - 75 YEARS - per m²

			Production	Constr	uction	Us	se in the second se			D Benefits &	
Impacts CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (75 years)	B4 Replace (75 years)	C2 Transport	C3 Waste processing	C4 Disposal	load beyond system boundaries
Renewable primary energy excl. RM	kg CO2 eq	1.06E+2	2.10E+1	1.12E-1	3.05E+0	3.36E+1	4.85E+1	1.80E-2	9.38E-2	0.00E+0	-4.69E-1
Renewable primary energy used as RM	kg CO2 eq	2.34E+1	8.83E+0	0.00E+0	-1.04E+0	0.00E+0	1.56E+1	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total renewable primary energy	kg CO2 eq	1.30E+2	2.98E+1	1.12E-1	2.01E+0	3.36E+1	6.41E+1	1.80E-2	9.38E-2	0.00E+0	-4.69E-1
Non renewable primary energy excl. RM	kg CO2 eq	4.27E+2	6.89E+1	7.88E+0	8.99E+0	1.64E+2	1.75E+2	1.26E+0	5.35E-1	0.00E+0	-6.40E+1
Non renewable primary energy used as RM	kg CFC11 eq	1.97E+2	5.12E+1	0.00E+0	1.44E+1	0.00E+0	1.31E+2	0.00E+0	0.00E+0	0.00E+0	-3.14E+1
Total non renewable primary energy	mol H+ eq	6.23E+2	1.20E+2	7.88E+0	2.34E+1	1.64E+2	3.06E+2	1.26E+0	5.35E-1	0.00E+0	-9.54E+1
Use of secondary material	kg P eq	4.54E-1	1.38E-1	0.00E+0	1.38E-2	0.00E+0	3.03E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of renewable secondary fuels	kg PO4 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of non renewable secondary fuels	kg N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Recovered energy	mol N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Net use of fresh water	kg NMVOC eq	6.76E-1	1.39E-1	8.88E-4	3.06E-2	1.63E-1	3.42E-1	1.42E-4	4.58E-4	0.00E+0	-4.69E-2
Hazardous waste disposed	kg Sb eq	1.52E+0	3.11E-1	5.79E-3	1.21E-1	2.00E-1	8.80E-1	9.21E-4	8.44E-4	0.00E+0	-6.06E-2
Non hazardous waste disposed	MJ	1.91E+1	2.33E+0	4.55E-1	2.49E+0	3.02E+0	1.07E+1	7.30E-2	8.83E-3	0.00E+0	-8.19E-1
Radioactive waste disposed (High)	m3 depriv.	4.51E-4	5.50E-5	5.83E-7	9.69E-6	2.53E-4	1.32E-4	9.34E-8	8.12E-7	0.00E+0	-2.40E-6
Radioactive waste disposed (Inter-Low)	disease inc.	2.09E-3	2.52E-4	5.27E-5	6.48E-5	9.50E-4	7.61E-4	8.39E-6	3.07E-6	0.00E+0	1.20E-5
Components for re-use	kBq U-235 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for recycling	CTUe	9.87E+0	2.06E-2	0.00E+0	1.09E-1	0.00E+0	6.58E+0	0.00E+0	3.16E+0	0.00E+0	0.00E+0
Materials for energy recovery	CTUh	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Exported energy	CTUh	4.31E-1	7.17E-2	0.00E+0	7.20E-2	0.00E+0	2.87E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0

Gerflor. MIPOL

MIPOLAM COLLECTION

4.3.2.2. Resources, waste categories and outgoing flows in case of LANDFILL at end of use

RESOURCES, WASTES CATEGORIES AND OUTGOING FLOWS - LANDFILL - 75 YEARS - per m²

				-							
lucius ata			Production	Const	ruction	Us	e		D Benefits & load beyond		
Impacts CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (75 years)	B4 Replace (75 years)	C2 Transport	C3 Waste processing	C4 Disposal	system boundaries
Renewable primary energy excl. RM	kg CO2 eq	1.06E+2	2.10E+1	1.12E-1	3.05E+0	3.36E+1	4.84E+1	1.80E-2	0.00E+0	3.12E-2	0.00E+0
Renewable primary energy used as RM	kg CO2 eq	2.34E+1	8.83E+0	0.00E+0	-1.04E+0	0.00E+0	1.56E+1	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total renewable primary energy	kg CO2 eq	1.30E+2	2.98E+1	1.12E-1	2.01E+0	3.36E+1	6.40E+1	1.80E-2	0.00E+0	3.12E-2	0.00E+0
Non renewable primary energy excl. RM	kg CO2 eq	4.27E+2	6.89E+1	7.88E+0	8.99E+0	1.64E+2	1.75E+2	1.26E+0	0.00E+0	7.07E-1	0.00E+0
Non renewable primary energy used as RM	kg CFC11 eq	1.97E+2	5.12E+1	0.00E+0	1.44E+1	0.00E+0	1.31E+2	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total non renewable primary energy	mol H+ eq	6.24E+2	1.20E+2	7.88E+0	2.34E+1	1.64E+2	3.06E+2	1.26E+0	0.00E+0	7.07E-1	0.00E+0
Use of secondary material	kg P eq	4.54E-1	1.38E-1	0.00E+0	1.38E-2	0.00E+0	3.03E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of renewable secondary fuels	kg PO4 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of non renewable secondary fuels	kg N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Recovered energy	mol N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Net use of fresh water	kg NMVOC eq	6.78E-1	1.39E-1	8.88E-4	3.06E-2	1.63E-1	3.43E-1	1.42E-4	0.00E+0	8.96E-4	0.00E+0
Hazardous waste disposed	kg Sb eq	1.52E+0	3.11E-1	5.79E-3	1.21E-1	2.00E-1	8.80E-1	9.21E-4	0.00E+0	8.15E-4	0.00E+0
Non hazardous waste disposed	MJ	2.86E+1	2.33E+0	4.55E-1	2.49E+0	3.02E+0	1.70E+1	7.30E-2	0.00E+0	3.17E+0	0.00E+0
Radioactive waste disposed (High)	m3 depriv.	4.49E-4	5.50E-5	5.83E-7	9.69E-6	2.53E-4	1.31E-4	9.34E-8	0.00E+0	8.24E-8	0.00E+0
Radioactive waste disposed (Inter-Low)	disease inc.	2.10E-3	2.52E-4	5.27E-5	6.48E-5	9.50E-4	7.64E-4	8.39E-6	0.00E+0	4.49E-6	0.00E+0
Components for re-use	kBq U-235 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for recycling	CTUe	3.89E-1	2.06E-2	0.00E+0	1.09E-1	0.00E+0	2.59E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for energy recovery	CTUh	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Exported energy	CTUh	4.31E-1	7.17E-2	0.00E+0	7.20E-2	0.00E+0	2.87E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0

Gerflor MIPOLAM COLLECTION

4.3.2.3. Resources, waste categories and outgoing flows in case of INCINERATION at end of use

RESOURCES, WASTES CATEGORIES AND OUTGOING FLOWS - INCINERATION - 75 YEARS - per m²

Importo			Production	Const	ruction	Us	e		End-of-life		
Impacts CML v4.3	Units	Total	A1 – A3 Total Production	A4 Transport	A5 Installation	B2 Mainten. (75 years)	B4 Replace (75 years)	C2 Transport	C3 Waste processing	C4 Disposal	load beyond system boundaries
Renewable primary energy excl. RM	kg CO2 eq	1.09E+2	2.10E+1	1.12E-1	3.05E+0	3.36E+1	5.06E+1	1.80E-2	0.00E+0	1.11E+0	-1.11E+1
Renewable primary energy used as RM	kg CO2 eq	2.34E+1	8.83E+0	0.00E+0	-1.04E+0	0.00E+0	1.56E+1	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Total renewable primary energy	kg CO2 eq	1.33E+2	2.98E+1	1.12E-1	2.01E+0	3.36E+1	6.61E+1	1.80E-2	0.00E+0	1.11E+0	-1.11E+1
Non renewable primary energy excl. RM	kg CO2 eq	6.58E+2	6.89E+1	7.88E+0	8.99E+0	1.64E+2	3.29E+2	1.26E+0	0.00E+0	7.75E+1	-8.04E+1
Non renewable primary energy used as RM	kg CFC11 eq	-6.19E+0	5.12E+1	0.00E+0	1.44E+1	0.00E+0	-4.12E+0	0.00E+0	0.00E+0	-6.76E+1	0.00E+0
Total non renewable primary energy	mol H+ eq	6.51E+2	1.20E+2	7.88E+0	2.34E+1	1.64E+2	3.25E+2	1.26E+0	0.00E+0	9.91E+0	-8.04E+1
Use of secondary material	kg P eq	4.54E-1	1.38E-1	0.00E+0	1.38E-2	0.00E+0	3.03E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of renewable secondary fuels	kg PO4 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Use of non renewable secondary fuels	kg N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Recovered energy	mol N eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Net use of fresh water	kg NMVOC eq	7.37E-1	1.39E-1	8.88E-4	3.06E-2	1.63E-1	3.82E-1	1.42E-4	0.00E+0	2.06E-2	-5.30E-2
Hazardous waste disposed	kg Sb eq	5.61E+0	3.11E-1	5.79E-3	1.21E-1	2.00E-1	3.60E+0	9.21E-4	0.00E+0	1.36E+0	-6.44E-2
Non hazardous waste disposed	MJ	2.09E+1	2.33E+0	4.55E-1	2.49E+0	3.02E+0	1.19E+1	7.30E-2	0.00E+0	5.98E-1	-8.34E-1
Radioactive waste disposed (High)	m3 depriv.	4.67E-4	5.50E-5	5.83E-7	9.69E-6	2.53E-4	1.43E-4	9.34E-8	0.00E+0	6.06E-6	-9.64E-5
Radioactive waste disposed (Inter-Low)	disease inc.	2.18E-3	2.52E-4	5.27E-5	6.48E-5	9.50E-4	8.21E-4	8.39E-6	0.00E+0	3.32E-5	-4.31E-4
Components for re-use	kBq U-235 eq	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for recycling	CTUe	3.89E-1	2.06E-2	0.00E+0	1.09E-1	0.00E+0	2.59E-1	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Materials for energy recovery	CTUh	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0	0.00E+0
Exported energy	CTUh	6.89E+1	7.17E-2	0.00E+0	7.20E-2	0.00E+0	4.59E+1	0.00E+0	0.00E+0	2.28E+1	0.00E+0

<u>Gerflor</u>

MIPOLAM COLLECTION

5. Life Cycle Assessment – Carbon emissions and removals

Carbon Emissions and Removals over the ESL of 75 years

PARAMETER	A1	A2	A3	A4	A5	B1	B2	B4	C2	C4	TOTAL LIFE CYCLE (A1-C4)
BCRP [kg CO2]	0.0093	-	-	-	-	-	-	0.01852578	-	-	0.0278
BCEP [kg CO2]	-	-	-	-	-	-	-	0.01852578	-	0.0093	0.0278
BCRK [kg CO2]	-	-	0.0589	-	-	-	-	0.117735307	-	-	0.1766
BCEK [kg CO2]	-	-	-	-	0.0589	-	-	0.117735307	-	-	0.1766
BCEW [kg CO2]	-	-	-	-	-	-	-	-	-	-	-
CCE [kg CO2]	-	-	-	-	-	-	-	-	-	-	-
CCR [kg CO2]	-	-	-	-	-	-	-	-	-	-	-
CWNR [kg CO2]	-	-	-	-	-	-	-	-	-	-	-

BCRP: Biogenic Carbon Removal from Product / BCEP: Biogenic Carbon Emission from Product / BCRK: Biogenic Carbon Removal from Packaging / BCEK: Biogenic Carbon Emission from Packaging / BCEW: Biogenic Carbon Emission from Product / BCRK: Biogenic Carbon Removal from Packaging / BCEK: Biogenic Carbon Emission from Packaging / BCEW: Biogenic Carbon Emission from Product / BCRK: Biogenic Carbon Removal from Packaging / BCEW: Biogenic Carbon Emission from Product / BCEW: Biogenic Carbon Emission from Packaging / BCEW: Biogenic Carbon Emission from Packagin

6. LCA Interpretation

As the product must be replaced twice during its life cycle, the replacement stage is the most important because it covers all the stages of the life cycle twice. Maintenance stage has a great impact on several indicators, due mainly to the detergent and his chemicals which compose it. Production of raw material, especially PVC has an impact on the results.

Gerflor MIPOLAM COLLECTION

7. Additional Environmental Information

7.1. Environment and Health During Manufacturing

Gerflor's factory conforms to:

- ISO 9001 Quality Management System,
- ISO 14001 Environmental Management System,
- ISO 50001 Energy Management System.

Gerflor uses 100% certified renewable electricity in its plants.

7.2. Environment and Health During Installation

The manufacturer's guidelines should be adhered to during the installation of this product.

7.3. Environment and Health During the use stage

The product is certified FloorScore, M1, and IAC Gold (for several references). The measured concentration of total volatile organic compounds (TVOC) is lessthan/equal to 0.5 mg/m³ (in accordance with CDPH/EHLB Standard Method v1.2-2017).

The product is not exposed to soil and water during the use stage.

8. Further Information

Additional information can be found on **www.gerflor.com**.

9. References

ISO 14025

ISO 14025:2006: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04+A2 2019: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category ofconstruction products

UL Environment

UL Environment General Program Instructions March2022 Version 2.7

Ecoinvent V3.8 Ecoinvent Life Cycle Inventory database Version 3.8 http://www.ecoinvent.org

UL Standard 10010. PCR Part A

PCR -Part A: Life Cycle Assessment Calculation Rulesand Report Requirements. Version 4.0. UL Environnment. https://industries.ul.com/environment

UL 10010-7. PCR Part B

PCR - Part B: Flooring EPD Requirements. Second Edition. Dated September 28. 2018. UL Environment. https://www.ul.com/